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Abstract

The antiplane shear deformation of a bi-material wedge with finite radius is studied in this paper. Depending upon
the boundary condition prescribed on the circular segment of the wedge, traction or displacement, two problems are
analyzed. In each problem two different cases of boundary conditions on the radial edges of the composite wedge
are considered. The radial boundary data are: traction–displacement and traction–traction. The solution of governing
differential equations is accomplished by means of finite Mellin transforms. The closed form solutions are obtained for
displacement and stress fields in the entire domain. The geometric singularities of stress fields are observed to be depen-
dent on material property, in general. However, in the special case of equal apex angles in the traction–traction prob-
lem, this dependency ceases to exist and the geometric singularity shows dependency only upon the apex angle. A result
which is in agreement with that cited in the literature for bi-material wedges with infinite radii. In part II of the paper,
Antiplane shear deformation of bi-material circular media containing an interfacial edge crack is considered. As a spe-
cial case of bi-material wedges studied in part I of the paper, explicit expressions are derived for the stress intensity fac-
tor at the tip of an edge crack lying at the interface of the bi-material media. It is seen that in general, the stress intensity
factor is a function of material property. However, in special cases of traction–traction problem, i.e., similar materials
and also equal apex angles, the stress intensity factor becomes independent of material property and the result coincides
with the results in the literature.
� 2004 Elsevier Ltd. All rights reserved.
0020-7683/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2004.11.002

* Corresponding author. Tel.: +98 217343300; fax: +98 217334338.
E-mail address: shahani@kntu.ac.ir

mailto:shahani@kntu.ac.ir


3094 A.R. Shahani / International Journal of Solids and Structures 42 (2005) 3093–3113
1. Introduction

Bonded wedges of different materials have been under consideration in the recent decades. Bogy (1971)
and Dempsey and Sinclair (1979, 1981) studied the in-plane problem of two edge-bonded elastic wedges of
different materials. Ma and Hour (1989) analyzed the antiplane shear deformation problem of simple iso-
tropic, bi-material and anisotropic wedges with infinite radii. All of the above-mentioned papers were de-
voted to the analysis of the order of stress singularity at the wedge apex. In fact, the stress fields may have a
form of the order O(r�ks ) near the apex (r! 0), in which ks is called the order of stress singularity. Ting
(1986) studied the order of stress singularity at the tip of an interface crack in a single isotropic and aniso-
tropic material under in-plane loading. Indeed, the base of his studies was the in-plane problem of a simple
wedge in special apex angles p and 2p. The antiplane shear deformation problem of isotropic as well as
anisotropic finite wedges was solved under different boundary conditions by Kargarnovin et al. (1997)
and Shahani (1999), respectively. Analytical solutions for the displacement and stress fields were derived
and explicit expressions for the order of stress singularity at the wedge apex were extracted. Meanwhile,
the conditions for which the stress singularity does occur at the apex were derived as functions of geometry
and material property. In a recent paper (Shahani, submitted), the author have derived closed form rela-
tions for the stresses directly from the series form equations of Kargarnovin et al. (1997), using mathemat-
ical techniques. It has been shown that the shz-component is unbounded at the point of application of the
concentrated tractions, however, the srz-component is convergent at that point. Also, continuity of the
srz-component over the entire wedge is studied. The facts which were not apparent from the series form
solutions of Kargarnovin et al. (1997). On the other hand, Fariborz (2004) has shown the continuity of
the srz-component of the paper Kargarnovin et al. (1997) along the arc r = h, numerically. Shahani and
Adibnazari (2000) considered the antiplane shear deformation problem of perfectly bonded dissimilar
wedges with infinite radii as well as bonded wedges with an interfacial crack. They extracted explicit expres-
sions for the stress distribution in the bi-material wedge under traction–traction boundary conditions on
the radial edges of the composite wedge and showed that in the special case of equal apex angles (but still
with different materials), the stress distribution releases its dependency to the material property. In a recent
paper, the author (Shahani (2001)) derived a closed form solution for an edge crack lying at the interface of
two edge-bonded wedges and terminating to the apex.

The only paper which deals with the antiplane shear deformation of bi-material wedges with finite radius
is that of Kargarnovin and Fariborz (2000). This work has been restricted to the derivation of the displace-
ment field, near the wedge apex only. Meanwhile, only ‘‘the dominant solution for displacement field near
the wedge apex has been obtained (Kargarnovin and Fariborz, 2000)’’.

The finiteness of the radius of the wedge causes that the effect of different possible boundary conditions
on the circular segment of the wedge become important.

On the other hand, analytical expressions for the stress intensity factors of different geometries and var-
ious loadings are important in fracture mechanics. In the area of mode III problems, a number of contri-
butions are related to the problem of finite or semi-infinite cracks in an infinite medium (Suo, 1989; Shiue
et al., 1989; Choi et al., 1994; Lee and Earmme, 2000; Shahani and Adibnazari, 2000; Shahani, 2001). How-
ever, the interaction of finite boundaries on the cracks affects the severity of the induced stresses near the
crack tip. Also, edge cracks vastly occur in composite laminates and bonded structures. Hence, edge delam-
ination or edge debonding between the laminas or dissimilar components has appeared to become the main
failure mode of these materials.

Most interfacial edge crack problems analyzed in the literature to date considered cracks between two
bonded quarter planes. In a recent paper, the author (Shahani, 2003) has analyzed the antiplane shear
deformation of several edge-cracked geometries and derived analytical expressions for the stress intensity
factor of single-material circular shafts with edge cracks, bonded half planes containing an interfacial edge
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crack, bonded wedges with an interfacial edge crack terminating to the apex and also DCB�s. All of the
above-mentioned problems have been analyzed under traction–traction boundary conditions.

In the present paper, antiplane shear deformation of two dissimilar edge-bonded wedges with finite radii
is studied. The paper is organized in two parts. In part I, stress and singularity analysis in bi-material finite
wedges is considered. Two problems related to the type of boundary condition prescribed on the circular
portion of the boundary are studied. The traction free and fixed displacement conditions are imposed on
the arc for problems I and II, respectively. The boundary conditions on the radial edges of the composite
wedge in these problems are: traction–displacement and traction–traction. The tractions are assumed to act
concentrically which allows the solutions to be used as the Green�s function for the analysis of a bi-material
wedge under general distribution of traction. The solution is accomplished by employing the finite Mellin
transforms. The full field solution is obtained for displacement and stresses. Also, analytical expressions are
derived for the orders of stress singularity. In general, the order of stress singularity depends on the material
property of the bi-material wedge. However, in special cases, the order of stress singularity releases its
dependency to the material property, a fact which is in agreement with the published results in the litera-
ture. It is shown, as was expected, that in the special case of a bi-material wedge with infinite radius, the
results of the two problems become identical.

In part II of the present paper, analytical expressions are derived for the stress intensity factors in
different geometries of bi-material circular media containing an interfacial edge crack. Parallel to that
followed in part I, the stress intensity factor expressions are extracted for problems I and II, i.e., trac-
tion-free and fixed displacement boundary conditions on the circular portion of the boundary, respectively.
In fact, the finite boundary (finite radius of the bi-material circular media) affects the analytical expressions
for the stress intensity factors. Furthermore, in each problem, two cases of boundary conditions corre-
sponding to the boundary data prescribed on the crack faces are considered, which are: traction–displace-
ment and traction–traction. As in part I of the paper, in all of the problems concentrated antiplane tractions
are assumed to act which allows the solutions to be used as the Green�s function for obtaining the stress
intensity factor of any General distribution of tractions. Various combinations of the apex angles are con-
sidered for which closed form solutions are obtained for the related characteristic equations and explicit
relations are derived for the stress intensity factor. Generally, the stress intensity factors are dependent
on the material property (mismatch ratio of the composite wedge), however, in special cases of traction–
traction problem, i.e., similar materials and also equal apex angles, the stress intensity factor becomes inde-
pendent of material property and the obtained results coincide with the results in the literature. In addition,
in the special case of infinite bi-material media with an interfacial edge crack, the stress intensity factors can
easily be obtained by letting the radius of the circular media to approach infinity.
2. Part I: stress and singularity analysis in bi-material finite wedge

2.1. Formulation and problem solution

Consider two dissimilar isotropic wedges with finite radii, a, apex angles a and b, shear moduli l1, l2,
and infinite lengths in the direction perpendicular to the plane of the wedge, which are bonded together
along a common edge (Fig. 1). The common edge is chosen as the reference axis for defining the coordinate
h. The condition of antiplane shear deformation is imposed on the composite wedge. This implies that the
only nonzero displacement component be the out of plane component, Wi, which is a function of the in-
plane coordinates (r,h). Therefore, the nonvanishing stress components are sirzðr; hÞ; sihzðr; hÞ. The subscript
and superscripts, i, in the displacement and stress components indicate these functions in the ith wedge
(i = 1,2). The constitutive equations for isotropic materials undergoing antiplane deformation reduce to



Fig. 1. Schematic view of a bi-material wedge.
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sirz ¼ li
oW i

or
sihz ¼

li

r
oW i

oh
; i ¼ 1; 2 ð1Þ
In the absence of body forces, by making use of (1), the equilibrium equation in terms of displacement ap-
pears as
o
2W i

or2
þ 1

r
oW i

or
þ 1

r2

o
2W i

oh2
¼ 0; i ¼ 1; 2 ð2Þ
One piece of boundary data prevailing in all the cases treated in problem I is the traction-free condition on
the circular segment of the wedge circumference
sirzða; hÞ ¼ 0 ð3Þ

In problem II the wedge is fixed on the circular segment of the boundary. Thus
W iða; hÞ ¼ 0 ð4Þ

The solution to the Laplace�s equation (2) for a finite wedge may be accomplished by means of the finite
Mellin transforms. The finite Mellin transform of first and second kinds are defined, respectively (Sneddon,
1972) as
M1½W iðr; hÞ� ¼ W 	
i1ðS; hÞ ¼

Z a

0

a2S

rSþ1
� rS�1

� �
W iðr; hÞdr

M2½W iðr; hÞ� ¼ W 	
i2ðS; hÞ ¼

Z a

0

a2S

rSþ1
þ rS�1

� �
W iðr; hÞdr

ð5Þ
where S is a complex transform parameter. The inversions of these transforms are represented by
(Kargarnovin et al., 1997)
M�1
j ½W 	

ijðS; hÞ� ¼ W iðr; hÞ ¼
ð�1Þj

2pi

Z cþi1

c�i1
r�SW 	

ijðS; hÞdS ði; j ¼ 1; 2Þ ð6Þ
It should be noted that the parameter, i, in the denominator and also in the limits of the integral is the so-
called pure imaginary number i ¼

ffiffiffiffiffiffiffi
�1

p
, and should not be confused with the sub/superscript parameter, i.

Application of the Mellin transform of first kind in conjunction with integration by parts in (2) yields
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d2

dh2
þ S2

� �
W 	

i1ðS; hÞ þ 2SaSW iða; hÞ ¼ 0; ði ¼ 1; 2Þ ð7Þ
provided that
lim
r!0

ða2Sr�S � rSÞr oW iðr; hÞ
or

þ Sða2Sr�S þ rSÞW iðr; hÞ
� �

¼ 0 ð8Þ
Similarly, employing the Mellin transform of second kind in (2), leads to
d2

dh2
þ S2

� �
W 	

i2ðS; hÞ þ 2aSþ1 oW iða; hÞ
or

¼ 0 ði ¼ 1; 2Þ ð9Þ
provided that
lim
r!0

ða2Sr�S þ rSÞr oW iðr; hÞ
or

þ Sða2Sr�S � rSÞW iðr; hÞ
� �

¼ 0 ð10Þ
The conditions expressed by (8) and (10) specify the strip of regularity which is the range of proper values
for the real quantity C in the inversion formulas (6). Applying the boundary condition (4) in (7), and the
boundary condition (3) with the aid of the first of (1) in (9) lead to the following equation for both
problems:
d2W 	
ij

dh2
þ S2W 	

ij ¼ 0 ði; j ¼ 1; 2Þ ð11Þ
The solution to this equation is readily known to be
W 	
ijðS; hÞ ¼ AiðSÞ sinðShÞ þ BiðSÞ cosðShÞ ði; j ¼ 1; 2Þ ð12Þ
In the following two problems the boundary data on the radial edges are enforced to compute the unknown
coefficients in (12). The values of j are 2 and 1 in problems I and II, respectively.
2.2. Problem I

Two different cases are analyzed here, depending upon the boundary conditions applied on the radial
edges of the composite wedge. If one of the edges is fixed and the other one is subjected to a concentrated
traction, we have a traction–displacement problem. On the other hand, if both edges are subjected to con-
centrated tractions, which are of opposite direction, a traction–traction problem is encountered. These
cases for problem I are analyzed separately in this section.

2.2.1. Case Ia—traction–displacement

The corresponding boundary conditions of the problem in this case are
W 2ðr;�bÞ ¼ 0

s1
hzðr; aÞ ¼ Pdðr � hÞ
W 1ðr; 0Þ ¼ W 2ðr; 0Þ
s1

hzðr; 0Þ ¼ s2
hzðr; 0Þ

ð13Þ
where d denotes the Dirac-delta function. It is worth-mentioning that the choice of the second of bound-
ary conditions (13), leads to the Green�s function solution for the problem. The latter two conditions
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correspond to the continuity of the displacement and tractions due to the perfect bonding. Applying the
Mellin transform of second kind with the aid of the second of Eq. (1), if necessary, on the boundary con-
ditions (13) and then, applying these transformed boundary conditions on Eq. (12) result in the unknown
coefficients. The transformed displacements may then be obtained as
W 	
12ðS; hÞ ¼

Pða2Sh�S þ hSÞ½R sinðShÞ cosðSbÞ þ cosðShÞ sinðSbÞ�
l1S½R cosðSaÞ cosðSbÞ � sinðSaÞ sinðSbÞ�

W 	
22ðS; hÞ ¼

P ða2Sh�S þ hSÞ sin½Sðh þ bÞ�
l1S½R cosðSaÞ cosðSbÞ � sinðSaÞ sinðSbÞ�

ð14Þ
where
R ¼ l2

l1

ð15Þ
The obtained transformed displacements are meromorphic functions of S. The displacement functions in
the two wedges can be obtained by applying the inverse Mellin transform, Eq. (6), with j = 2 in Eq. (14).
The resultant complex integrals should be computed using the residue theorem. The procedure of these con-
tour integrations have been completely outlined by Kargarnovin et al. (1997) and are omitted here for the
sake of brevity. The full field displacement functions may then be obtained as follows:
W 1ðr; hÞ ¼
P

l1ðRa þ bÞ
X
n

r
h

� 	Sn
1 þ h

a

� �2Sn
" #

R cosðSnbÞ sinðSnhÞ þ sinðSnbÞ cosðSnhÞ
Sn sinðSnaÞ cosðSnbÞ½1 þ kcot2ðSnaÞ�

¼ PR
l1ðRa þ bÞ

X
n

r
h

� 	Sn
1 þ h

a

� �2Sn
" #

cos½Snða � hÞ�
Snsin

2ðSnaÞ½1 þ kcot2ðSnaÞ�
; r 6 h

W 2ðr; hÞ ¼
P

l1ðRa þ bÞ
X
n

r
h

� 	Sn
1 þ h

a

� �2Sn
" #

sin½Snðh þ bÞ�
Sn sinðSnaÞ cosðSnbÞ½1 þ kcot2ðSnaÞ�

; r 6 h

W 1ðr; hÞ ¼
PR

l1ðRa þ bÞ
X
n

h
r

� �Sn

1 þ r
a

� 	2Sn
� �

cos½Snða � hÞ�
Snsin

2ðSnaÞ½1 þ kcot2ðSnaÞ�
; r P h

W 2ðr; hÞ ¼
P

l1ðRa þ bÞ
X
n

h
r

� �Sn

1 þ r
a

� 	2Sn
� �

sin½Snðh þ bÞ�
Sn sinðSnaÞ cosðSnbÞ½1 þ kcot2ðSnaÞ�

; r P h

ð16Þ
where
k ¼ Rða þ RbÞ
Ra þ b

ð17Þ
and Sn�s are the positive roots of the following characteristic equation:
R cosðSnaÞ cosðSnbÞ � sinðSnaÞ sinðSnbÞ ¼ 0 ð18Þ
or in a simpler form
tanðSnaÞ tanðSnbÞ ¼ R ð19Þ
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Application of Eq. (1) in (16), results in the stress distribution in the composite wedge
s1
rzðr; hÞ ¼

PR
ðRa þ bÞh

X
n

r
h

� 	Sn�1

1 þ h
a

� �2Sn
" #

cos½Snða � hÞ�
sin2ðSnaÞ½1 þ kcot2ðSnaÞ�

; r 6 h

s2
rzðr; hÞ ¼

PR
ðRa þ bÞh

X
n

r
h

� 	Sn�1

1 þ h
a

� �2Sn
" #

sin½Snðh þ bÞ�
sinðSnaÞ cosðSnbÞ½1 þ kcot2ðSnaÞ�

; r 6 h

s1
hzðr; hÞ ¼

PR
ðRa þ bÞh

X
n

r
h

� 	Sn�1

1 þ h
a

� �2Sn
" #

sin½Snða � hÞ�
sin2ðSnaÞ½1 þ kcot2ðSnaÞ�

; r 6 h

s2
hzðr; hÞ ¼

PR
ðRa þ bÞh

X
n

r
h

� 	Sn�1

1 þ h
a

� �2Sn
" #

cos½Snðh þ bÞ�
sinðSnaÞ cosðSnbÞ½1 þ kcot2ðSnaÞ�

; r 6 h

s1
rzðr; hÞ ¼

PR
ðRa þ bÞh

X
n

h
r

� �Snþ1

1 � r
a

� 	2Sn
� �

cos½Snða � hÞ�
sin2ðSnaÞ½1 þ kcot2ðSnaÞ�

; r P h

s2
rzðr; hÞ ¼

PR
ðRa þ bÞh

X
n

h
r

� �Snþ1

1 � r
a

� 	2Sn
� �

sin½Snðh þ bÞ�
sinðSnaÞ cosðSnbÞ½1 þ kcot2ðSnaÞ�

; r P h

s1
hzðr; hÞ ¼

PR
ðRa þ bÞh

X
n

h
r

� �Snþ1

1 þ r
a

� 	2Sn
� �

sin½Snða � hÞ�
sin2ðSnaÞ½1 þ kcot2ðSnaÞ�

; r P h

s2
hzðr; hÞ ¼

PR
ðRa þ bÞh

X
n

h
r

� �Snþ1

1 þ r
a

� 	2Sn
� �

cos½Snðh þ bÞ�
sinðSnaÞ cosðSnbÞ½1 þ kcot2ðSnaÞ�

; r P h

ð20Þ
Eqs. (20) show that a stress singularity may occur at the wedge apex which has an order of
kS ¼ 1 � S1 ð21Þ

where S1 is the least of the poles Sn. Whether or not stress singularity occurs at the apex depends upon the
inequality jS1j < 1 holds.

In the special case, when b = 0 and l1 = l2 = l, the problem reduces to that of a simple finite wedge and
we have from Eq. (18)
W ðr; hÞ ¼ P
l

X1
n¼0

ð�1Þn 2

ð2nþ 1Þp 1 þ h
a

� �ð2nþ1Þp
a

" #
r
h

� 	ð2nþ1Þp
2a

sin
ð2nþ 1Þph

2a

� �
; r 6 h

W ðr; hÞ ¼ P
l

X1
n¼0

ð�1Þn 2

ð2nþ 1Þp 1 þ r
a

� 	ð2nþ1Þp
a

" #
h
r

� �ð2nþ1Þp
2a

sin
ð2nþ 1Þph

2a

� �
; r P h

ð22Þ
which is the same as that published by Kargarnovin et al. (1997) for a simple finite isotropic wedge.
In the special case of equal apex angles (a = b), the characteristic equation (19) reduces to
tanðSnaÞ ¼ 

ffiffiffi
R

p
ð23Þ
which can be solved to yield
Sn ¼
1

a
tan�1ð

ffiffiffi
R

p
Þ þ np

a

Sn ¼
p � tan�1ð

ffiffiffi
R

p
Þ

a
þ np

a
; n ¼ 0; 1; 2; . . . ð24Þ
Selecting the least of the roots S1 ¼ 1
a tan�1ð

ffiffiffi
R

p
Þ, the order of stress singularity appears as
kS ¼ 1 � 1

a
tan�1ð

ffiffiffi
R

p
Þ ð25Þ
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Eq. (25) shows that the stress singularity is explicitly dependent on the material property. The occurrence of
the stress singularity in this case is restricted to the condition:
a > tan�1ð
ffiffiffi
R

p
Þ ð26Þ
This inequality specifies the apex angles for which the stress singularity does occur at the wedge apex. It is
noteworthy that the angles for which the singularity occurs at the apex depend on the material property of
the bi-material wedge. For example, for similar bonded wedges (l1 = l2 or R = 1), the apex angles for
which the singularity occurs at the apex, are those which are greater than p

4
. However, for R = 1, the sin-

gularity occurs in wedges the apex angles of which are greater than p
2
. Hence, for a bi-material wedge with

mismatch ratio R = 1, a square-root singularity exists at the apex if a ¼ p
2
, however, for a composite wedge

with R = 1, the same singularity occurs if a = p.

2.2.2. Case Ib—traction–traction

The boundary conditions corresponding to this problem are
s1
hzðr; aÞ ¼ Pdðr � hÞ

s2
hzðr;�bÞ ¼ Pdðr � hÞ
W 1ðr; 0Þ ¼ W 2ðr; 0Þ
s1

hzðr; 0Þ ¼ s2
hzðr; 0Þ

ð27Þ
Application of the Mellin transform of the second kind, in conjunction with the second of Eq. (1), on the
boundary conditions (27) and then, using the resultant relations for obtaining the unknown coefficients of
Eq. (12), with j = 2, result in
W 	
12ðS; hÞ ¼

P a2Sh�S þ hS
� 


fcos½Sða � bÞ� � cos½Sðh þ bÞ� þ ðR� 1Þ sinðSbÞ sinðShÞg
l1S½R cosðSaÞ sinðSbÞ þ sinðSaÞ cosðSbÞ�

W 	
22ðS; hÞ ¼

P ½a2Sh�S þ hS �fcos½Sða � bÞ� � cos½Sðh þ bÞ� � R�1
R sinðSaÞ sinðShÞg

l1S½R cosðSaÞ sinðSbÞ þ sinðSaÞ cosðSbÞ�

ð28Þ
Applying the inversion formula (6) and using the residue theorem for contour integration as explained by
Kargarnovin et al. (1997), we obtain
W 1ðr; hÞ ¼
P

l1ðRa þ bÞ
X
n

r
h

� 	Sn
1 þ h

a

� �2Sn
" #

� cos½Snða � hÞ� � cos½Snðh þ bÞ� þ ðR� 1Þ sinðSnbÞ sinðSnhÞ
Sn sinðSnaÞ sinðSnbÞ½1 þ kcot2ðSnaÞ�

; r 6 h

W 2ðr; hÞ ¼
P

l1ðRa þ bÞ
X
n

r
h

� 	Sn
1 þ h

a

� �2Sn
" #

�
cos½Snða � hÞ� � cos½Snðh þ bÞ� � R�1

R sinðSnaÞ sinðSnhÞ
Sn sinðSnaÞ sinðSnbÞ½1 þ kcot2ðSnaÞ�

; r 6 h

W 1ðr; hÞ ¼
P

l1ðRa þ bÞ
X
n

h
r

� �Sn

1 þ r
a

� 	2Sn
� �

� cos½Snða � hÞ� � cos½Snðh þ bÞ� þ ðR� 1Þ sinðSnbÞ sinðSnhÞ
Sn sinðSnaÞ sinðSnbÞ½1 þ kcot2ðSnaÞ�

; r P h

W 2ðr; hÞ ¼
P

l1ðRa þ bÞ
X
n

h
r

� �Sn

1 þ r
a

� 	2Sn
� �

�
cos½Snða � hÞ� � cos½Snðh þ bÞ� � R�1

R sinðSnaÞ sinðSnhÞ
Sn sinðSnaÞ sinðSnbÞ½1 þ kcot2ðSnaÞ�

; r P h

ð29Þ
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where k is defined by the relation (17) and the Sn�s are the positive roots of the following characteristic
equation:
R cosðSnaÞ sinðSnbÞ þ sinðSnaÞ cosðSnbÞ ¼ 0 ð30Þ

or in a simpler form
tanðSnaÞ cotðSnbÞ ¼ �R ð31Þ

Now, the stress distribution can be obtained by applying Eq. (1) in Eq. (29), as
s1
rzðr; hÞ ¼

P
ðRa þ bÞh

X
n

r
h

� 	Sn�1

1 þ h
a

� �2Sn
" #

� cos Snða � hÞ½ � � cos Snðh þ bÞ½ � þ ðR� 1Þ sinðSnbÞ sinðSnhÞ
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ð32Þ
Again, a singularity of the order kS, as defined in Eq. (21), may occur at the wedge apex, provided that
jS1j < 1.
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Letting a! 1 in Eq. (32), the problem reduces to that of two bonded dissimilar wedges with infinite
radii. The obtained results in this case are exactly the same as that published by the author (Shahani
and Adibnazari, 2000).

In the special case of equal apex angles (a = b), it is convenient to use Eq. (30) for finding the poles.
Applying a = b in Eq. (30) gives
sinðSnaÞ cosðSnaÞ ¼ 0 ð33Þ
which gives two sets of poles
Sn ¼
np
a

Sn ¼
ð2nþ 1Þp

2a
; n ¼ 0; 1; 2; 3; . . . ð34Þ
Replacing these simple poles into Eq. (32), results in after some mathematical manipulations:
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ð35Þ
It is observed that the obtained stress distribution for the case of equal apex angles is independent of mate-
rial property and thus, it is the same for the two dissimilar wedges. Eq. (35) also show that the stress field is
bounded in a wedge with 0 < a < p

2
, whereas in a wedge with p

2
< a < p, there exists a stress singularity of

the order
kS ¼ 1 � p
2a

ð36Þ
For a = p, the composite wedge resembles two bonded semi-circles of different materials with an edge
crack. It is seen that a familiar square root singularity exists at the crack tip in this case.

2.3. Problem II

Basically the analysis of problem II parallels that of problem I. Therefore, the analysis has been made
brief in this problem. In the sequel, two foregoing cases of boundary data on the radial edges of the wedge
are taken into account.

2.3.1. Case IIa—traction–displacement

The boundary conditions on the radial edges are denoted by (13). Applying these conditions with the aid
of the second of Eq. (1) in (12) with j = 1, results in
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W 	
11ðS; hÞ ¼
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ð37Þ
Taking the inverse Mellin transform, Eq. (6) with j = 1, and computing the inversion integrals by
means of the residue theorem with the same line of calculations explained by Kargarnovin et al. (1997), lead
to
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ð38Þ
where Sn�s are the positive nonzero roots of Eq. (18) or Eq. (19). The stress components may then be com-
puted using Eq. (1). Here, only the shz-component is given in the r 6 h region, for the sake of brevity:
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ð39Þ
Turning our attention to a wedge with infinite radius, it is obvious that since at infinity the displacement
and stress fields tend to zero, this case should convert to case I a. To verify the statement, it suffices to
let a! 1 in (38) and (39) which reproduces Eqs. (16) and (20).
2.3.2. Case IIb—traction–traction

In a manner similar to case Ib, we take the Mellin transform of the first kind of the boundary conditions
(27) and use the results to compute the coefficients in (12) with j = 1. The transformed displacements are
then
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Taking the inverse Mellin transform using Eq. (6) with j = 1, leads to
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ð41Þ
where Sn�s are the positive nonzero roots of Eq. (30) or Eq. (31). The stress components can then be com-
puted using Eq. (1), of which only the shz-component is given here
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Letting a! 1 in Eqs. (29), (32) and (41), (42), we arrive in the same relations for the bonded wedges with
infinite radii, the results which accord with that published by Shahani and Adibnazari (2000).

For the special case of equal apex angles (a = b), Eq. (42) reduce to
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3. Part II: mode III stress intensity factor in bi-material media containing an interfacial edge crack

In part II, we are going to use the results of part I and derive the stress intensity factors at the tip of an
interfacial edge crack in bi-material circular media. Indeed, the geometry under consideration is the special
case of two bonded dissimilar finite wedges, whose apex angles are such that they form a circular bi-mate-
rial shaft containing an interfacial edge crack, i.e., a + b = 2p, as shown in Fig. 2.



Fig. 2. Schematic view of a bi-material circular media containing an interfacial edge crack.
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The radial edges of the composite wedge (the crack faces in this special case), can be subjected both to trac-
tions (traction–traction) or one be fixed and the other subjected to traction (traction–displacement), as ex-
plained in part I. Here, it is considered that the crack face OA is subjected to concentrated traction
perpendicular to the plane of Fig. 1 in the outward direction with a distance h from the crack tip. However,
the edge OB either is subjected to concentrated traction perpendicular to the plane of Fig. 1 in the inward direc-
tion at a distance h from the crack tip in the traction–traction case, or is fixed in the traction–displacement case.

Without loss of generality, we assume b P a. The stress intensity factor at the crack tip can be computed
using the following formula:
K III ¼ lim
r!0

ffiffiffiffiffiffi
2p

p
rkSs2

hzðr; a � pÞ ð44Þ
where kS is the order of stress singularity at the wedge apex (the crack tip in this case), as defined in part I of
this paper. Using the expressions obtained for the stress components in part I, the stress intensity factor can
be computed with the aid of Eq. (44). This is done here for the two different problems described in part I,
i.e., bi-material wedge with traction free boundary condition prescribed on the circular segment (problem I)
and bi-material wedge fixed on the circular segment (problem II).

3.1. Problem I

3.1.1. Case Ia—traction–displacement

� �2S
h i
KIII ¼
ffiffiffiffiffiffi
2p

p
PR

ðRa þ bÞhS1

1 þ h
a

1 cosðpS1Þ
sinðS1aÞ cosðS1bÞ½1 þ kcot2ðS1aÞ�

ð45Þ
where S1 is the least positive (nonzero) root of the characteristic equation (18) or (19).

3.1.2. Case Ib—traction–traction

� �2S
h i� �
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ð46Þ
where S1 is the least positive (nonzero) root of the characteristic equation (30) or (31).
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3.2. Problem II

3.2.1. Case IIa—traction–displacement

� �2S
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1 cosðS1pÞ
sinðS1aÞ cosðS1bÞ½1 þ kcot2ðS1aÞ�

ð47Þ
where S1 is the least positive (nonzero) root of the characteristic equation (18) or (19).

3.2.2. Case IIb—traction–traction
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where S1 is the least positive (nonzero) root of the characteristic equation (30) or (31).
4. Special case of bonded wedges with similar materials

In this case l1 = l2 or R = 1 and the twin problems are considered here separately.

4.1. Problem I

4.1.1. Case Ia—traction–displacement

Substitution of R = 1 into the corresponding characteristic equation (Eq. (19)), yields
tanðSnaÞ tanðSnbÞ ¼ 1
or
tanðSnaÞ ¼ cotðSnbÞ ¼ tan
p
2
� Snb

� 	

which gives
Sn ¼
ð2nþ 1Þp
2ða þ bÞ ; n ¼ 0; 1; 2; . . . ð49Þ
For the considered interfacial crack problem, a þ b ¼ 2p and thus, it can be concluded from Eq. (49)
Sn ¼
2nþ 1

4
; n ¼ 0; 1; 2; . . . ð50Þ
Choosing the least positive value of the roots, we have
S1 ¼
1

4
ð51Þ
Substituting this into Eq. (45) and facilitating terms, lead to
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It is observed that in the case of similar materials, the result becomes independent of the effect of the selec-
tion of apex angles. This agrees with the physical nature of the problem, since in this case the problem re-
duces to that of a circular shaft with an edge crack. The same result as Eq. (52) can be obtained from the
analysis of a simple isotropic wedge with finite radius as accomplished by Kargarnovin et al. (1997), letting
a = 2p and using Eq. (44). It is seen that for an infinite space (a! 1), the stress intensity factor becomes
K III ¼
P

2
ffiffiffi
p

p
h

1
4

ð53Þ
Also, for a finite shaft the stress intensity factor varies from Pffiffi
p

p
a1=4 for h = a to infinity when the concentrated

traction is applied at the crack tip (h = 0).

4.1.2. Case Ib—traction–traction

Replacing R = 1 in the corresponding characteristic equation (Eq. (31)), leads to
tanðSnaÞ cotðSnbÞ ¼ �1
or
tanðSnaÞ ¼ � tanðSnbÞ

which gives
Sn ¼
np

a þ b
; n ¼ 0; 1; 2; . . . ð54Þ
For the interfacial crack problem, a + b = 2p and hence, we have
Sn ¼
n
2
; n ¼ 0; 1; 2; . . . ð55Þ
Selecting the least positive value of the roots, results in
S1 ¼
1

2
ð56Þ
Substituting into Eq. (46) gives after some mathematical manipulations
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This result is the same as that published recently by the author (Shahani, 2003) for a simple isotropic cir-
cular shaft with an edge crack under the same loading.

It is seen that the stress intensity factor varies from 2
ffiffi
2

p
Pffiffiffiffi

pa
p when h = a, to infinity when the concentrated

traction coincides with the crack tip (h = 0). Also, for an infinite space with an edge crack (a! 1), we have
KIII ¼
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p ð58Þ
4.2. Problem II

4.2.1. Case IIa—traction–displacement

Again, for bonded wedges of similar materials in this case, the poles are given with Eqs. (50) and (51) for
the least of the poles. Computing the stress intensity factor results in
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It is seen that the stress intensity factor varies from zero when h = a, to infinity when the concentrated trac-
tion is applied at the crack tip (h = 0).

Turning our attention to an infinite space with an edge crack, it is obvious that since at infinity the dis-
placement and stress fields tend to zero, this case should convert to case Ia. To verify the statement suffice
to let a! 1 in (59) and reproduce (53).

4.2.2. Case IIb—traction–traction

In this case, the equation of the poles is the same Eq. (55) and S1 is given by Eq. (56). Thus, the stress
intensity factor can be computed as
KIII ¼
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2

p
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ph
p 1 � h

a

� �
ð60Þ
It is noteworthy that the stress intensity factor varies from zero for h = a, to infinity in the case of coinci-
dence of the concentrated traction with the crack tip (h = 0). Again, in the special case of infinite space with
an edge crack a! 1, the same result as the case Ib is obtained (Eq. (58)).
5. Various combinations of the apex angles of the composite wedge

Here, three combinations of the apex angles are considered which are a = b, b = 2a, b = 3a. In these
cases, the corresponding characteristic equations can be solved analytically, which causes that the simplified
relations for the stress intensity factors to be obtained.

5.1. The case when a = b

5.1.1. Problem I

5.1.1.1. Case Ia—traction–displacement. Applying a = b into Eq. (19), results in
tan2ðSnaÞ ¼ R ð61Þ

Eq. (61) can be solved to give
Sn ¼ 
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a
; n ¼ 0; 1; 2; . . . ð62Þ
Choosing the least positive pole, we have
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a
tan�1ð

ffiffiffi
R

p
Þ ð63Þ
Since, a + b = 2p in the problem considered, then we should have a = b = p. Substituting this and Eq. (63)
into Eq. (45), leads to the following expression for the stress intensity factor:
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hS1
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where
S1 ¼
1

p
tan�1ð

ffiffiffi
R

p
Þ ð65Þ
It is seen that the stress intensity factor for the bi-material considered, is a function of the material property
(R).
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5.1.1.2. Case Ib—traction–traction. Applying a = b = p into Eq. (30), yields
sinðSnpÞ ¼ 0 ) Sn ¼ n; n ¼ 1; 2; 3; . . .

cosðSnpÞ ¼ 0 ) Sn ¼ nþ 1

2
; n ¼ 0; 1; 2; . . . ð66Þ
Choosing the least positive root, S1 ¼ 1
2
, Eq. (46) reduces to
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ð67Þ
It is seen that in this case the stress intensity factor is independent of material property. This result could
also be obtained directly from Eq. (35) for the special case of equal apex angles, by applying Eq. (44) and
a = p. Because of independency of Eq. (67) of the material property, it is evident that this result must be the
same as that obtained for the case of similar materials (Eq. (57)).

5.1.2. Problem II

5.1.2.1. Case IIa—traction–displacement. In this case, we encounter to the same singularity as the case I a
(see Eq. (65)) and it can be shown similarly that the stress intensity factor is as follows:
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where S1 is given by Eq. (65). It is noticeable that the stress intensity factor varies from zero for h = a, to
infinity when h = 0. Again, for an infinite composite space with an interfacial crack, the results of the cases
Ia and IIa would become the same, i.e.,
KIII ¼
Pffiffiffiffiffiffi

2p
p

hS1

ffiffiffiffiffiffiffiffiffiffiffiffi
R

Rþ 1

r

5.1.2.2. Case IIb—traction–traction. Similar to what followed in the case Ib, the stress intensity factor ap-
pears as
KIII ¼
ffiffiffi
2

p
Pffiffiffiffiffiffi

ph
p 1 � h

a

� �
ð69Þ
In the special case of a! 1, Eqs. (67) and (69) become coincident.

5.2. The case when b = 2a

The above relation together with the relation a + b = 2p, result in a ¼ 2p
3

and b ¼ 4p
3
.

5.2.1. Problem I

5.2.1.1. Case Ia—traction–displacement. Letting
xn ¼ Sna ð70Þ

the characteristic equation corresponding to this case, i.e., Eq. (19) gives
tan xn tan 2xn ¼ tan xn
2 tan xn

1 � tan2xn
¼ R ð71Þ
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or
tan2xn ¼
R

Rþ 2
) xn ¼ 
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffi
R

Rþ 2

r !
þ np; n ¼ 0; 1; 2; . . . ð72Þ
Selection of the least positive (nonzero) value of the roots yields
S1 ¼
1

a
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffi
R

Rþ 2

r !
¼ 3

2p
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffi
R

Rþ 2

r !
ð73Þ
Substituting for S1 into Eq. (45) yields after some mathematical manipulations:
KIII ¼
3P

2
ffiffiffiffiffiffi
2p

p
hS1

1 þ h
a

� �2S1

" # ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðRþ 1Þ

p
Rþ 2

1 þ 2
Rþ 2

Rþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ 2

2ðRþ 1Þ

s
� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ 2

2ðRþ 1Þ

s" #1
2

ð74Þ
It should be noticed that the stress intensity factor depends upon the material property for the considered
bi-material circular shaft. In the special case of R = 1, Eq. (74) reduces to Eq. (52).

5.2.1.2. Case Ib—traction–traction. In this case, the characteristic equation (31) can be written as
tan xn ¼ �R tan 2xn ¼ �R
2 tan xn

1 � tan2xn
ð75Þ
from which we obtain
tan xn ¼ 0 ) xn ¼ np

tan2xn ¼ 1 þ 2R ) xn ¼ 
tan�1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2R

p
Þ þ np; n ¼ 0; 1; 2; . . . ð76Þ
Choosing the least positive (nonzero) value of the roots, yields
S1 ¼
1

a
tan�1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2R

p
Þ ¼ 3

2p
tan�1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2R

p
Þ ð77Þ
Substitution of S1 into Eq. (46) and facilitating lead to
KIII ¼
3P 1 þ h

a

� �2S1

h i
2
ffiffiffi
p

p
hS1

� R
ffiffiffiffiffiffiffiffiffiffiffiffi
Rþ 1

p

Rþ 1

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2

ðRþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðRþ 1Þ

p þ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðRþ 1Þ

p
s

� R� 1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rþ 1

2ðRþ 1Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðRþ 1Þ

p
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðRþ 1Þ

p
s" #

ð78Þ

In the special case of a single-material circular shaft with an edge crack (R = 1), the same result as Eq. (57)
is obtained.

5.2.2. Problem II

5.2.2.1. Case IIa—traction–displacement. In a manner similar to case I a, it can be shown that the stress
intensity factor is given by the following relation:
KIII ¼
3P

2
ffiffiffiffiffiffi
2p

p
hS1

1 � h
a

� �2S1

" # ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðRþ 1Þ

p
Rþ 2

1 þ 2
Rþ 2

Rþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ 2

2ðRþ 1Þ

s
� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ 2

2ðRþ 1Þ

s" #1
2

ð79Þ
where S1 should be computed from Eq. (73).
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5.2.2.2. Case IIb—traction–traction. Following the same line of calculations as case Ib, the stress intensity
factor can be obtained as
KIII ¼
3P 1 � h

a

� �2S1
h i
2
ffiffiffi
p

p
hS1

� R
ffiffiffiffiffiffiffiffiffiffiffiffi
Rþ 1

p

Rþ 1

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2

ðRþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðRþ 1Þ

p þ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðRþ 1Þ

p
s

� R� 1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rþ 1

2ðRþ 1Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðRþ 1Þ

p
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðRþ 1Þ

p
s" #

ð80Þ

where S1 is given by Eq. (77).

5.3. The case when b = 3a

The above relation together with a + b = 2p gives a ¼ p
2

and b ¼ 3p
2
.

5.3.1. Problem I

5.3.1.1. Case Ia—traction–displacement. The characteristic equation (19) can be written, in this case, as
tan xn tanð3xnÞ ¼ tan xn
3 tan xn � tan3xn

1 � 3tan2xn
¼ R ð81Þ
Eq. (81) can be solved to give
xn ¼ 
tan�1 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðRþ 1Þ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðRþ 1Þ2 � 4R

qr" #
þ np; n ¼ 0; 1; 2; . . . ð82Þ
Then, S1 appears to be
S1 ¼
2

p
tan�1 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðRþ 1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðRþ 1Þ2 � 4R

qr" #
ð83Þ
Replacing S1 into Eq. (45) yields after some mathematical manipulations:
KIII ¼
4P 1 þ h

a

� �2S1

h i
ffiffiffi
p

p
hS1

�
R 1 � 1

4
3ðRþ 1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðRþ 1Þ2 � 4R

q� �2
" # ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ðRþ 1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðRþ 1Þ2 � 4R

qr

1 � 3

2
3ðRþ 1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðRþ 1Þ2 � 4R

q� �� �
3ðRþ 1ÞðRþ 3Þ þ 2Rð1 þ 3RÞ � ðRþ 3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðRþ 1Þ2 � 4R

q� �
ð84Þ
5.3.1.2. Case Ib—traction–traction. Substituting b = 3a into Eq. (31), results in
tan xn ¼ �R tanð3xnÞ ¼ �R
3 tan xn � tan3xn

1 � 3tan2xn
ð85Þ
Facilitating terms, we obtain
tan xn ¼ 0 ) xn ¼ np
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tan2xn ¼
1 þ 3R
3 þ R

) xn ¼ 
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 3R
3 þ R

r !
þ np; n ¼ 0; 1; 2; . . . ð86Þ
Choosing the least positive (nonzero) value of the roots, we have
S1 ¼
1

a
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 3R
3 þ R

r !
¼ 2

p
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 3R
3 þ R

r !
ð87Þ
Replacing S1 into Eq. (46) and accomplishing some mathematical operations, we arrive at
KIII ¼
ffiffiffi
2

p
Pffiffiffi

p
p

hS1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 3R
3 þ R

r
1 þ h

a

� �2S1

" #
ð88Þ
It is easily seen that in the case of a simple isotropic circular shaft containing an edge crack (R = 1), Eq. (88)
coincides with Eq. (57).

5.3.2. Problem II
5.3.2.1. Case II a—traction–displacement. The stress intensity factor in this case is as follows:
KIII ¼
4P 1 � h

a

� �2S1
h i
ffiffiffi
p

p
hS1

�
R 1 � 1

4
3ðRþ 1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðRþ 1Þ2 � 4R

q� �2
" # ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ðRþ 1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðRþ 1Þ2 � 4R

qr

1 � 3

2
3ðRþ 1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðRþ 1Þ2 � 4R

q� �� �
3ðRþ 1ÞðRþ 3Þ þ 2Rð1 þ 3RÞ � ðRþ 3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðRþ 1Þ2 � 4R

q� �
ð89Þ
5.3.2.2. Case IIb—traction–traction. The stress intensity factor corresponding to this case appears to be
KIII ¼
ffiffiffi
2

p
Pffiffiffi

p
p

hS1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 3R
3 þ R

r
1 � h

a

� �2S1

" #
ð90Þ
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